Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339002

RESUMO

The ever-increasing applications of metabarcoding analyses for environmental samples demand a well-designed assessment of the stability of DNA and RNA contained in cells that are deposited or buried in marine sediments. We thus conducted a qPCR quantification of the DNA and RNA in the vegetative cells of three microalgae entrapped in facsimile marine sediments and found that >90% of DNA and up to 99% of RNA for all microalgal species were degraded within 60 days at 4 °C. A further examination of the potential interference of the relic DNA of the vegetative cells with resting cyst detection in sediments was performed via a metabarcoding analysis in artificial marine sediments spiked with the vegetative cells of two Kareniaceae dinoflagellates and the resting cysts of another three dinoflagellates. The results demonstrated a dramatic decrease in the relative abundances of the two Kareniaceae dinoflagellates in 120 days, while those of the three resting cysts increased dramatically. Together, our results suggest that a positive detection of microalgae via metabarcoding analysis in DNA or RNA extracted from marine sediments strongly indicates the presence of intact or viable cysts or spores due to the rapid decay of relic DNA/RNA. This study provides a solid basis for the data interpretation of metabarcoding surveys, particularly in resting cyst detection.


Assuntos
Dinoflagelados , Microalgas , Microalgas/genética , DNA , Dinoflagelados/genética , Código de Barras de DNA Taxonômico/métodos , RNA/genética , Estabilidade de RNA , Sedimentos Geológicos
2.
Life Sci Alliance ; 6(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385752

RESUMO

The Hippo signalling pathway is a master regulator of cell growth, proliferation, and cancer. The transcriptional coregulators of the Hippo pathway, YAP and TAZ, are central in various cancers. However, how YAP and TAZ get activated in most types of cancers is not well understood. Here, we show that androgens activate YAP/TAZ via the androgen receptor (AR) in prostate cancer (PCa), and that this activation is differential. AR regulates YAP translation while inducing transcription of the TAZ encoding gene, WWTR1 Furthermore, we show that AR-mediated YAP/TAZ activation is regulated by the RhoA GTPases transcriptional mediator, serum response factor (SRF). Importantly, in prostate cancer patients, SRF expression positively correlates with TAZ and the YAP/TAZ target genes CYR61 and CTGF We demonstrate that YAP/TAZ are not essential for sustaining AR activity, however, targeting YAP/TAZ or SRF sensitize PCa cells to AR inhibition in anchorage-independent growth conditions. Our findings dissect the cellular roles of YAP, TAZ, and SRF in prostate cancer cells. Our data emphasize the interplay between these transcriptional regulators and their roles in prostate tumorigenesis and highlight how these insights might be exploited therapeutically.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Humanos , Masculino , Androgênios , Carcinogênese , Próstata , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo
3.
Sci Transl Med ; 15(698): eabn0736, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37256934

RESUMO

Progressive fibrosis is a feature of aging and chronic tissue injury in multiple organs, including the kidney and heart. Glioma-associated oncogene 1 expressing (Gli1+) cells are a major source of activated fibroblasts in multiple organs, but the links between injury, inflammation, and Gli1+ cell expansion and tissue fibrosis remain incompletely understood. We demonstrated that leukocyte-derived tumor necrosis factor (TNF) promoted Gli1+ cell proliferation and cardiorenal fibrosis through induction and release of Indian Hedgehog (IHH) from renal epithelial cells. Using single-cell-resolution transcriptomic analysis, we identified an "inflammatory" proximal tubular epithelial (iPT) population contributing to TNF- and nuclear factor κB (NF-κB)-induced IHH production in vivo. TNF-induced Ubiquitin D (Ubd) expression was observed in human proximal tubular cells in vitro and during murine and human renal disease and aging. Studies using pharmacological and conditional genetic ablation of TNF-induced IHH signaling revealed that IHH activated canonical Hedgehog signaling in Gli1+ cells, which led to their activation, proliferation, and fibrosis within the injured and aging kidney and heart. These changes were inhibited in mice by Ihh deletion in Pax8-expressing cells or by pharmacological blockade of TNF, NF-κB, or Gli1 signaling. Increased amounts of circulating IHH were associated with loss of renal function and higher rates of cardiovascular disease in patients with chronic kidney disease. Thus, IHH connects leukocyte activation to Gli1+ cell expansion and represents a potential target for therapies to inhibit inflammation-induced fibrosis.


Assuntos
Proteínas Hedgehog , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Fibrose , Proteínas Hedgehog/metabolismo , Inflamação , NF-kappa B , Fatores de Necrose Tumoral , Proteína GLI1 em Dedos de Zinco
4.
Clin Transl Med ; 13(2): e1190, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36740402

RESUMO

The Hippo signalling pathway is dysregulated across a wide range of cancer types and, although driver mutations that directly affect the core Hippo components are rare, a handful is found within pleural mesothelioma (PM). PM is a deadly disease of the lining of the lung caused by asbestos exposure. By pooling the largest-scale clinical datasets publicly available, we here interrogate associations between the most prevalent driver mutations within PM and Hippo pathway disruption in patients, while assessing correlations with a variety of clinical markers. This analysis reveals a consistent worse outcome in patients exhibiting transcriptional markers of YAP/TAZ activation, pointing to the potential of leveraging Hippo pathway transcriptional activation status as a metric by which patients may be meaningfully stratified. Preclinical models recapitulating disease are transformative in order to develop new therapeutic strategies. We here establish an isogenic cell-line model of PM, which represents the most frequently mutated genes and which faithfully recapitulates the molecular features of clinical PM. This preclinical model is developed to probe the molecular basis by which the Hippo pathway and key driver mutations affect cancer initiation and progression. Implementing this approach, we reveal the role of NF2 as a mechanosensory component of the Hippo pathway in mesothelial cells. Cellular NF2 loss upon physiological stiffnesses analogous to the tumour niche drive YAP/TAZ-dependent anchorage-independent growth. Consequently, the development and characterisation of this cellular model provide a unique resource to obtain molecular insights into the disease and progress new drug discovery programs together with future stratification of PM patients.


Assuntos
Mesotelioma , Fatores de Transcrição , Humanos , Via de Sinalização Hippo , Mesotelioma/genética , Mesotelioma/metabolismo , Mesotelioma/patologia , Mutação/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
5.
EMBO J ; 41(13): e108719, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35702882

RESUMO

Cells need to rapidly and precisely react to multiple mechanical and chemical stimuli in order to ensure precise context-dependent responses. This requires dynamic cellular signalling events that ensure homeostasis and plasticity when needed. A less well-understood process is cellular response to elevated interstitial fluid pressure, where the cell senses and responds to changes in extracellular hydrostatic pressure. Here, using quantitative label-free digital holographic imaging, combined with genome editing, biochemical assays and confocal imaging, we analyse the temporal cellular response to hydrostatic pressure. Upon elevated cyclic hydrostatic pressure, the cell responds by rapid, dramatic and reversible changes in cellular volume. We show that YAP and TAZ, the co-transcriptional regulators of the Hippo signalling pathway, control cell volume and that cells without YAP and TAZ have lower plasma membrane tension. We present direct evidence that YAP/TAZ drive the cellular response to hydrostatic pressure, a process that is at least partly mediated via clathrin-dependent endocytosis. Additionally, upon elevated oscillating hydrostatic pressure, YAP/TAZ are activated and induce TEAD-mediated transcription and expression of cellular components involved in dynamic regulation of cell volume and extracellular matrix. This cellular response confers a feedback loop that allows the cell to robustly respond to changes in interstitial fluid pressure.


Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Homeostase , Pressão Hidrostática , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Bioinform Adv ; 2(1): vbac008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699391

RESUMO

Motivation: Disrupted PERCC1 gene expression causes an intractable congenital diarrhoea in infants. However, this gene's molecular mechanism is unknown and no homologous proteins have been reported. Results: Our detailed evolutionary analysis of PERCC1 sequence reveals it to be a previously unappreciated member of the YAP/TAZ/FAM181 family of homologous transcriptional regulators. Like YAP and TAZ, PERCC1 likely interacts with DNA via binding to TEA/ATTS domain transcription factors (TEADs) using its conserved interface-2 and -3 sequences. We compare the expression patterns of PERCC1 with those of YAP, TAZ, TEADs. Our report provides the identification and first in-depth bioinformatic analysis of a YAP/TAZ homologue, and a likely new regulator of the YAP/TAZ-TEAD transcriptional complex. Availability and implementation: The data underlying this article are available in UniProt Database. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...